課題番号 : F-20-IT-0023

利用形態 :技術代行

利用課題名(日本語) :バレープラズモニック結晶のバンド構造解析とエッジモードの観察

Program Title (English) : Band structure analysis and edge mode observation of valley plasmonic crystal

利用者名(日本語) :斉藤光1),早田翔士郎2)

Username (English) : <u>Hikaru Saito</u>¹⁾, Shojiro Hayata²⁾

所属名(日本語) :1)九州大学大学院総合理工学研究院,2)九州大学大学院総合理工学府物質理工学専

攻

Affiliation (English) : 1) Department of Electrical and Materials Science, Kyushu University, 2)

Department of Molecular and Material Sciences, Kyushu University

キーワード/Keyword :リソグラフィ・露光・描画装置, 成膜・膜堆積, 形状・形態観察, 分析, プラズモニクス

1. 概要(Summary)

遷移金属ダイカルコゲナイド(TMD)の構造を模した極 性ハニカム格子状の周期構造をもつ金属表面(バレープ ラズモニック結晶)では、表面プラズモンポラリトン(SPP) の分散関係はエネルギーギャップをもつ。逆格子の K点 および K'点のエネルギーギャップに面した谷型のバンド 分散面は「バレー」と呼ばれ、K 点と K点とでプラズモン モードは逆向きの軌道角運動量をもち、対応する軌道角 運動量をもつ励起源でそれぞれを選択的に励起できる。 さらに、極性が反転したバレープラズモニック結晶同士を 接合した場合、その境界上を単一方向に伝搬するエッジ モードが形成されることが先行研究で示されている[1]。こ のようなエッジモードの形成はマイクロ波領域では実証さ れているが、半導体ナノ材料と組み合わせることが可能な 近赤外から可視域にかけては未だ実証されていない。本 研究では、電子エネルギー損失分光(EELS)とカソード ルミネセンス(CL)を用いて、バレープラズモニック結晶の バンド構造解析とエッジモードの実証を試みた。

2. <u>実験(Experimental)</u>

【利用した主な装置】

電子ビーム露光装置(スピンコータ・ホットプレート・オーブン等)、電子ビーム露光データ加工ソフトウェア

【実験方法】

 Si_3N_4 膜付きTEMグリッドの裏側にAlを80nm、表側に SiO_2 を10nm 堆積させ、その上に電子ビーム露光装置で極性ハニカム格子型の構造パターンを作製した。

3. 結果と考察(Results and Discussion)

周期 380 nm、2 種類のディスク直径 160 nm と80 nm、 高さ80 nm の極性ハニカム格子が精度よく作製され、 EELS によりバンド構造(Fig. 1(左))と、境界上のエッジモ ードが確認できた(Fig. 1(右))。 続いて Fig. 2(左)のように、 伝搬する SPP を光に変換し、CL マップを取得した。 Fig. 2(右)に示す 1.46 eV の CL マップにより、境界上(青枠)を 伝搬するエッジモードを実証できた。

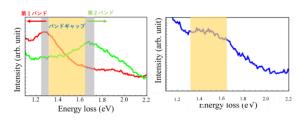


Fig. 1 EELS spectra obtained from (left) the valley plasmonic crystal and (right) the polarity inversion boundary.

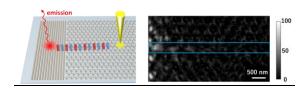


Fig. 2 (left) Schematic of plasmon/photon conversion for the CL measurement. (right) CL map of the edge mode obtained at 1.46 eV.

4. その他・特記事項(Others)

- ·参考文献 [1]X. Wu et al., Nat. Commun. 8, 1304 (2017).
- ・試料作製について河田眞太郎様と梅本高明様(東京工業大学ナノテクノロジープラットフォーム)の協力に感謝します。

5. 論文·学会発表(Publication/Presentation)

斉藤光、「電子線分光によるプラズモニック結晶の研究」、 日本物理学会第76回年次大会(2021年)

6. 関連特許(Patent)

なし。