課題番号	:F-20-HK-0018
利用形態	:機器利用
利用課題名(日本語)	:
Program Title (English)	: Photocurrent Generation on Gold Nanoparticles Loaded ${ m Ga_2O_3}$.
利用者名(日本語)	: <u>王亞光</u> ¹⁾
Username (English)	: <u>Yaguang Wang</u> ¹⁾
所属名(日本語)	:1) 北海道大学大学院情報科学研究科
Affiliation (English)	:1) Graduate School/Faculty of Information Science and Technology, Hokkaido
	University
キーワード/Keyword	:Pulsed Laser Deposition, Plasmon-induced photocurrent, Thin film、成膜・膜堆
	積

<u>1. 概要(Summary)</u>

 Ga_2O_3 is a promising semiconductor with a much negative conduction band. Au nanoparticles (Au-NPs) were loaded on the surface of to improve the use of visible light due the strong interaction between visible light and Au-NPs ^[1,2]. In our previous work, strong coupling between optical cavity and plasmon mode could efficiently enhance the light absorption and carrier separation. To construct the optical cavity, the thickness of Ga_2O_3 is just tens of nanometer scale. Therefore, Ga₂O₃ film with good conductivity and mobility is necessary in our following research. Pulse Laser Deposition is a kind of ideal method to fabricate the semiconductor film. In this work, deposition condition was investigated to obtain Ga₂O₃ with good quality.

<u>2. 実験(Experimental)</u>

【利用した主な装置】

半導体薄膜堆積装置 (PLD) (PAC-LMBE), 電子 ビーム蒸着装置 (EIKO Engineering Co.,Ltd. EB-580), 高分解能電解放射型走査型電子顕微鏡 (JEOL JSM-6700FT)

【実験方法】

The Sn doped Ga_2O_3 target was sintered at 1400°C for 10h. Ga_2O_3 film was fabricated by PLD under different deposition condition. Then 3-nm Au film was deposited on Ga_2O_3 film by E-beam Evaporation. Au-NPs were fabricated by thermal annealing at 800°C in air. The surface morphology was observed by scanning electron microscopy (SEM).

<u>3. 結果と考察(Results and Discussion)</u>

In this study, the laser energy, oxygen pressure deposition temperature and annealing temperature are the main factors we studied. XRD spectra showed the Ga_2O_3 film was obtained with very good crystallinity. Optical band gap calculated by the UV-Vis spectrum is 4.9 eV which is consist with reference value. The IPCE and I-V spectra showed and the annealing that oxygen pressure temperature mainly determine the electric properties of Ga₂O₃ film. As formation of oxygen vacancy is the main conductivity mechanism for Ga₂O₃ film. The deposition of Ga₂O₃ should be in poor oxygen condition. Too high annealing temperature would damage the oxygen vacancy, destroying the photoelectric response. After the modification of fabrication condition, Ga₂O₃ film with good semiconductor properties was obtained.

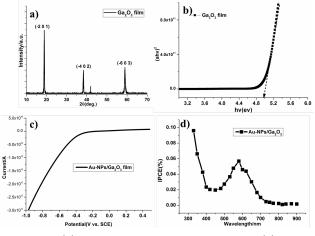


Figure 1. (a) XRD spectrum of Ga_2O_3 film. (b) Tauc plot of Ga_2O_3 . (c) I-V curve of Au-NPs loaded Ga_2O_3 film. (d) IPCE of Ga_2O_3 film.

4. その他・特記事項(Others)

·参考文献

なし

^[1] K. Maeda, K. Domen, J. Phys. Chem. C, 111 (2007) 7851-7861.

共同研究者: X. Shi, T. Oshikiri, H. Misawa (Hokkaido Univ.)

^{5.} 論文·学会発表(Publication/Presentation)

^[2] Y. Wang et al, *Nanoscale* 2020, 12, 22674-22679. <u>6. 関連特許(Patent)</u>