課題番号	:F-20-AT-0143
利用形態	:機器利用
利用課題名(日本語)	:pMOS デバイスのゲート酸化物としての酸化ケイ素
Program Title(English)	:Silicon oxide as gate oxide for pMOS devices
利用者名(日本語)	:ロザック ミカエル
Username(English)	: <u>Mickael Lozac'h</u>
所属名(日本語)	:一般社団法人ミニマルファブ推進機構、産業技術総合研究所
Affiliation(English)	:Minimal Fab Promoting Organization, National institute of advanced industrial
	science and technology (AIST)
キーワード/Keyword	:形状・形態観察、分析、Gate oxide, SiOx, Si-O stretching mode

<u>1. 概要(Summary)</u>

Our research focus on the silicon-oxide (Si-O) stretching mode from FTIR to assess the quality of p-channel metal-oxide-semiconductor field effect transistor (p-MOSFET), also called pMOS. We are investigating the possibility to link the density of interface states (D_{it}), between the gate oxide (SiO_x) and the Si wafer, and the Si-O stretching mode. Here, the optical properties of the silicon oxide are monitored by Fourier Transform Infra-Red (FTIR) and coupled with the gate oxide process, the chemical cleaning process prior to the gate oxide deposition, and D_{it} measured on pMOS devices.

<u>2. 実験(Experimental)</u>

【利用した主な装置】顕微フーリエ変換赤外分光装置 (FT-IR) 【 実 験 方 法 】The pMOS devices are fabricated by Minimal Fab: an advanced, costeffective, semiconductor fab where the area of the required cleanroom level is minimized to the surrounding of the silicon wafers (with a diameter of 12.5 mm), encapsulated in a shuttle during the full fabrication process. Then, the D_{it} estimated from C-V analysis and the Si-O stretching mode are systematically monitored.

3. 結果と考察(Results and Discussion)

For two pMOS devices A and B realized in a similar process, the D_{it} is estimated by C-V measurements at $5.5\pm1.0 \times 10^{10} \text{ eV}^{-1} \text{ cm}^{-2}$ and $4.5\pm1.5 \times 10^{11} \text{ eV}^{-1} \text{ cm}^{-2}$, respectively. The Si-O stretching mode, located at the wavenumbers from 1000 cm⁻¹ to 1250 cm⁻¹, and its deconvolution, is shown in Fig. 1. The devices are well deconvoluted into two peaks noted in-phase and out-of-phase (Fig.

1). Interestingly, the integrated area of the Si-O stretching out-of-phase is slightly larger for the pMOS device B that also presents a larger D_{it}. This could be attributed to some impurities present at the interface and/or some slight damages due to the fabrication process after the high temperature annealing (1150 °C for 1h) for the gate oxide. The nature of such impurity and its concentration or the possible damages still under process are investigation. Besides, the stoichiometry x of the silicon oxide (SiO_x) can also be determined with the position of the Si-O stretching mode in-phase. We estimate a similar stoichiometry about 1.91±0.01 and 1.92±0.01 for the pMOS devices A and B, respectively. Thus, coupling the FTIR analysis with D_{it} could be useful for the determination of the Gate oxide quality and its interface with the Si wafer.

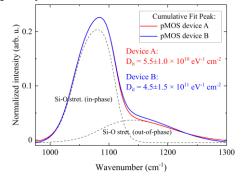


Fig. 1 FTIR Si-O stretching mode for two different pMOS devices A and B with respective D_{it}.

- <u>4. その他・特記事項(Others)</u>なし。
- <u>5. 論文・学会発表(Publication/Presentation)</u>
- M. Lozac'h, S. Khumpuang, and S. Hara, JSAP 68th Spring Meeting (2021).
- <u>6. 関連特許(Patent)</u>なし。