課題番号 : F-19-AT-0144

利用形態 :技術代行

利用課題名(日本語) :ガラス管へのコーティング

Program Title (English) : Metal coating inside glass tube

利用者名(日本語) :青山淳一、二位肇

Username (English) :Junichi Aoyama, <u>Hajime Nii</u>

所属名(日本語) :株式会社堀場製作所

Affiliation (English) : HORIBA, Ltd.

キーワード/Keyword:成膜・膜堆積、原子層堆積、導波管

1. 概要(Summary)

導波管の反射率向上を目指し、まずはガラス上に Ru 膜が成膜可能かの判断のために目標膜厚は 10 nm として内径 $100 \mu \text{ m}$ のガラス管内面へ原子層堆積法にて成膜を試みた。成膜後の導通確認によりガラス管外面には Ru がコーティングされていたが、目的とする内面へのコーティングは確認できなかった。

2. 実験(Experimental)

【利用した主な装置】

原子層堆積装置[FlexAL]

【実験方法】

導波管の基材となるガラス管内径 ϕ 100 μ m、長さを 5 mm から 100 mm 変えたものを複数本、Si ウェハ上へ接着し、原子層堆積装置内へ設置。下地膜(TiO_2)および 金属膜(Ru ; 目標膜厚 30 nm)を成膜する(Table 1)。成膜したガラス管を Si ウェハから取り外し、外周 1 か所膜を除去後、内面の導通をデジタルマルチメーターにて確認した。

Table 1 Conditions of Atomic layer deposition

膜種	Ru	${ m TiO_2}$
成膜温度	400 °C	400 ℃
プリカーサ	$\mathrm{Ru}(\mathrm{EtCp})_2$	TTIP
反応剤(方式)	$O_2(\psi - \neg \nu)$	H2O (サーマル)
サイクル	300 cycles	60 cycles

3. 結果と考察(Results and Discussion)

成膜した 5 mm および 20 mm のガラス管を Si ウェハから取り外し、外周の Ru を約 2 mm 幅で 1 周除去した後のガラス管では、両端の導通は確認できなかった (Fig. 1)。成膜直後の接着された状態のガラス管表面では、導

通が確認できていることから(Fig. 2)、成膜に必要な量の ガスがガラス管内へ導入されていないと推測される。

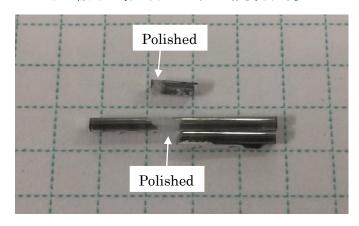


Fig. 1 Photograph of glass tubes with a 5 mm and a 20 mm length after around polished.

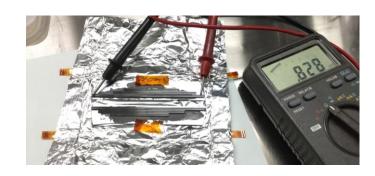


Fig. 2 Photograph of glass tubes on Silicon Wafer after atomic layer deposition

4. その他・特記事項(Others)

なし

<u>5. 論文・学会発表 (Publication/Presentation)</u>なし。

6. 関連特許(Patent)

出願中。