課題番号	:F-18-KT-0044
利用形態	:技術代行
利用課題名(日本語)	:原子間力顕微鏡によるナノスケール表面下構造可視化
Program Title(English)	:Nanometer-scale subsurface feature imaging using atomic force microscopy
利用者名(日本語)	:小林圭, 戸野博史, 横町伝
Username(English)	: <u>K. Kobayashi</u> , H. Tono, T. Yokocho
所属名(日本語)	:京都大学大学院工学研究科
Affiliation(English)	:Graduate School of Eng., Kyoto Univ.
キーワード/Keyword	:原子間力顕微鏡、ナノ構造、形状・形態観察、分析

<u>1. 概要(Summary)</u>

2005 年に Northwestern 大学の Dravid らにより、原 子間力顕微鏡(AFM)を用いた走査型近接場超音波ホロ グラフィ(SNFUH)が開発され、表面下の構造物をナノス ケール分解能で可視化できることが報告された。われわ れも、ポリイミド基板上に散布した金ナノ粒子をフォトポリ マーのスピンコート膜で覆ったサンドイッチ構造試料を作 製し、SNFUH を用いて実験を行い、金ナノ粒子の可視 化が可能であることを確認した。SNFUH ではカンチレバ ーおよび試料を励振するが、カンチレバーの接触共振周 波数付近でカンチレバーだけを励振する超音波原子間 力顕微鏡(UAFM)や、試料だけを励振する原子間力音 響顕微鏡 (AFAM)を用いても同様の結果が得られること を明らかにした。また最近、カンチレバーの熱振動ノイズ スペクトルを各点において測定する走査型熱振動顕微鏡 (Scanning Thermal Noise Microscopy: STNM)を開 発し、同試料の表面下構造の可視化に成功した。この STNM を用いて、ポリイミド基板上の金ナノ粒子だけでな く、シリコン基板上のポリスチレンナノ粒子も可視化可能で あることが分かった。ポリスチレンナノ粒子直上における接 触共振周波数がフォトポリマーの膜厚とどのような関係に あるかを調べるため、表面に凹凸のパターンを形成したシ リコン基板を用いて、STNM によるポリスチレン粒子可視 化実験を行うことを目指し、京都大学ナノテクノロジーハ ブ拠点の設備を利用して微細加工を行った。

<u>2. 実験(Experimental)</u>

【利用した主な装置】

ウエハスピン洗浄装置、大面積超高速電子ビーム描画 装置、レジスト現像装置、深堀りドライエッチング装置 (Φ4")、ドライエッチング装置、ダイシングソー、紫外線照 射装置、エキスパンド装置

【実験方法】

シリコン基板には一辺 400 nm の正方形のパターンを 700 nm ピッチで作製することとし、深さは 200 nm を目標 とした(Fig. 1)。

Fig. 1 Schematic of a Si chip with square pits.

京都大学ナノテクノロジーハブ拠点(微細加工ナノテクノ ロジープラッットフォーム)において、ウエハスピン洗浄装 置を用いて4インチSiウエハ(両面研磨)をSPM洗浄し、 レジスト(ZEP520A)を塗布後、大面積超高速電子ビーム 描画装置を用いてパターン描画し、有機現像液型レジスト 現像装置を用いて、現像液(ZED-N50)を用いて現像を 行った。その後、深堀りドライエッチング装置(Φ4")を用 いてドライエッチングを行った。エッチングは Table1 に示 す#1~#6の工程を1サイクルとして、8~12 サイクル行っ た。表中において括弧をつけて示した値は、バイパスライ ンに流すガスの流量を示している。

Table 1: Etching condition of Reactive Ion Deep Silicone Etcher.

	#1	#2	#3	#4	#5	#6	
SF_6 (sccm)	0	(60)	60	60	60	60	
C_4F_8 (sccm)	100	100	0	0	0	(100)	
O_2 (sccm)	5	5	5	5	5	5	
Bias (W)	5	5	1	10	0	0	
ICP (W)	1000						
Time (s)	0.2	0.2	0.1	0.2	0.2	0.2	

次に、ドライエッチング装置を用いてO2プラズマアッシン グを行った。プラズマアッシングの条件は O2 の流量 100 sccm、パワー100 W、圧力 10 Pa で 120 秒間アッシング を行った。最後に、ウエハスピン洗浄装置を用いてレジス トを除去した。

<u>3. 結果と考察(Results and Discussion)</u>

作製したデバイスを電子顕微鏡(Fig. 2)および AFM (Fig. 3)により観察し、所望のパターンが作製できている ことが確認できた。

Fig. 2 Scanning electron micrograph of a Si chip with square pits.

Fig. 3 Atomic force microsopy image of a Si chip with square pits.

本チップ上にポリスチレンナノ粒子(粒径 100 nm)を散 布し、フォトポリマーのスピンコート膜(膜厚 300 nm)で覆 った。115℃に加熱したホットプレート上で5分間ベーキン グし、サンドイッチ構造試料を作製した。この試料に対し、 STNMを用いてカンチレバーの接触共振周波数マップを 得た。ポリスチレンナノ粒子は 400 nm 角のピットの内側 および外側に分布しており、ピットの内側にあるポリスチレ ンナノ粒子の直上には膜厚約 500 nm のフォトポリマー膜 があり、ピットの外側にあるポリスチレンナノ粒子の直上に は膜厚約 300 nm のフォトポリマー膜があることになるが、 後者の方が接触共振周波数が低くなることが分かった。こ れは、フォトポリマー膜よりもヤング率の低いポリスチレン ナノ粒子が探針直下に存在することで接触共振周波数が 下がったもので、前者では探針直下 500 nm にポリスチレ ンナノ粒子があるのに対し、後者では探針直下 300 nm にポリスチレンナノ粒子があるため、後者の方がその影響 をより強く受けたものと考えられる。

4. その他・特記事項(Others)

·参考文献

[1] G. S. Shekhawat et al., Science 310, (2005) 89.

[2] K. Kimura et al., Ultramicroscopy 133, (2013)41.

[3] K. Kimura et al., Nanotechnology 27, (2016), 415707.

[4] A. Yao et al., Scientific Reports 7, (2018), 42718.

・科学研究費(挑戦的萌芽研究)「走査型熱雑音顕微鏡 による表面下構造可視化のメカニズム解明および応用可 能性探索」

<u>5. 論文·学会発表(Publication/Presentation)</u>

(1) 野坂 俊太、戸野 博史、木村 邦子、小林 圭、山田 啓文、走査型熱振動顕微鏡法を用いた高分子膜下 のポリスチレンナノ粒子の可視化(2)、第 65 回応用物 理学関係連合講演会、2018年3月19日

<u>6. 関連特許(Patent)</u>

該当なし。