課題番号 :F-18-GA-0014

利用形態:機器利用

利用課題名(日本語) :余剰受容体計測に向けたマイクロ流体デバイス開発

Program Title(English) : Development of microfluidic device for quantitative analysis of spare receptors

利用者名(日本語) : <u>平野勝也</u> Username(English) : <u>K. Hirano</u>

所属名(日本語) :香川大学医学部

Affiliation(English) : Faculty of Medicine, Kagawa University

キーワード/Keyword: 余剰受容体、マイクロ流体デバイス、リソグラフィー・露光・描画装置

1. 概要(Summary)

余剰受容体の定量化計測を目的として、細胞トラップ・薬剤刺激機構を有したマイクロ流体デバイスの開発に取り組んだ。フォトリソグラフィー関連装置を利用し、細胞トラップ用マイクロオリフィスアレイを有する SU-8 シート構造および PDMS マイクロ流路を作製した。

2. 実験(Experimental)

【利用した主な装置】

マスクレス露光装置(大日本科研社製, MX-1204)、マスクアライナ(ミカサ社製, MA-10)、スピンコータ(ミカサ社製, 1H-DX2)、走査電子顕微鏡(EDS 付き)(JEOL 社製, JSM-6060-EDS)

【実験方法】

流路構造は SU-8 をパターニングした鋳型に PDMS(polydimethylsiloxane)をモールディングすることで製作した。細胞トラップ構造部は Si 基板上に犠牲層として Omnicoat™(Micro chemical INC.)を塗布し、マスクアライナを用いて SU-8 でオリフィス部を製作した後、2 層目の SU-8 をパターニングしサポート層を形成した。流路部(PDMS)とトラップ構造部(SU-8)の接合は、LF 真空プラズマクリーナを用いた N2 プラズマの導入で行った。最後に Omnicoat™ 犠牲層をポジレジスト用現像液(NMD-3)を用いて常温下で 2.5 時間かけてエッチングすることによりシートを Si 基板から剥離させた。

3. 結果と考察 (Results and Discussion)

走査型電子顕微鏡(JSM-6060-EDS, JEOL) を用いて製作したオリフィス部を観察・評価した。結果を Table 1 に示す。設計値に対し $2 \mu m$ 以上縮小した微小なオリフィスが形成された。最小で設計値 $4 \mu m$ (実測値 $1.6 \pm 0.2 \mu m$)のオリフィスが作製され、その後の PDMS

流路との接合プロセスに用いた。流路と接合したマイクロ 流体デバイスの外観図を Fig. 1 に示す。

Table 1 Orifice diameter evaluation

Design value[µm]	3	4	5	6
mean± S.E.[µm]	-	1.6 ± 0.2	2.2 ± 0.2	3.4 ± 0.2
Error[µm]	-	-2.4	-2.8	-2.6
SEM im age	No pattern	5 μm	•	•_
Design value[µm]	7	8	9	10
mean± S.E.[µm]	4.5 ± 0.2	5.3 ± 0.2	6.3 ± 0.2	7.4 ± 0.2
Error[µm]	-2.5	-2.7	-2.7	-2.6
SEM im age	•	•	0	0

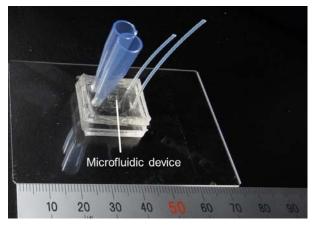


Fig. 1 PDMS microfluidic device.

4. その他・特記事項(Others)

- (1) Y. Matsui, et al., 電気学会 第 35 回センサ・マイクロマシンと応用システムシンポジウム論文集, 札幌 (2018 年 10 月), 31am-3-PS-159
- 5. 論文・学会発表 (Publication/Presentation) なし。

6. 関連特許(Patent)

なし。