課題番号 :F-16-HK-0044

利用形態 :機器利用

利用課題名(日本語) :

Program Title(English) : Exploring the Near-Field of Strongly Coupled Waveguide-Plasmon Modes by

Plasmon-Induced Photocurrent Generation Using a Gold Nanogratings-Loaded

Titanium Dioxide Photoelectrode

利用者名(日本語) :郭景春1),押切友也2)

Username(English) : <u>Jingchun Guo</u>1); Tomoya OSHIKIRI²⁾

所属名(日本語) :1) 北海道大学大学院情報科学研究科,2) 北海道大学電子科学研究所

Affiliation(English) :1) Graduate School Information Science and Technology, Hokkaido University, 2)

Research Institute for Electronic Science, Hokkaido University

1. 概要(Summary)

We investigated the near field properties of Au nanogratings on 250 nm TiO₂ thin film and silica glass substrate by photocurrent measurement. The plasmon-induced photocurrent generations of periodic Au nanogratings loaded on TiO₂ photoelectrode can reveal the near field properties and give a good understanding of strongly coupled waveguide-plasmon modes.

2. 実験(Experimental)

【利用した主な装置】

原子層堆積装置 (Picosun SUNALE-R), 超高精度 電子ビーム描画装置 (ELS-F125-U), 高分解能電界放 射型走査型電子顕微鏡 (JSM-6700FT)

【実験方法】

250 nm TiO₂ thin film was deposited onto quartz substrate by atomic layer deposition (ALD) system. Periodic Au nanogratings loaded on TiO₂ thin film were designed by using electron-beam lithography system (ELS-F125-U) operating at 125 kV and lift-off techniques. The characterization of topography of Au nanogratings loaded on TiO₂ thin film structures was verified by Scanning electron microscope (SEM) measurement.

3. 結果と考察(Results and Discussion)

SEM image of periodic Au nanogratings with 300 nm pitch size on 250 nm TiO₂ thin film is shown in Figure 1(a). The extinction spectra

(Figure 1b) represent the strongly coupled waveguide-plasmon modes with different pitch sizes. The coupling strength can be modulated by changing the period of Au nanogratings loaded TiO₂ structures. The near field properties of the strong coupled waveguide-plasmon modes can be probed by measuring the plasmon-induced photocurrent. The calculated internal quantum efficiency (IQE) action spectra have good response to the near-field enhancement.

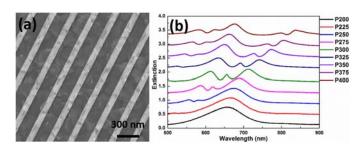


Fig. 1 SEM image (a) and extinction spectrum (b) of Au nanogratings on TiO_2 thin film with different pitch sizes.

<u>4. その他・特記事項(Others)</u>

- •共同研究者 三澤弘明、上野貢生(北大電子研)
- •参考文献
- (1) Christ, A et *al.*, Phys Rev Lett. 91, (2003) 183901.
- (2) Christ, A et al., Phys Rev B. 70, (2004) 125113.
- (3) Zeng, P et al., Nano Lett. 16, (2016) 2651-2656.

5. 論文·学会発表(Publication/Presentation)

(1) Jingchun Guo et *al.*, Analytica Chimica Acta, 957, (2017), 70–75.