課題番号 :F-15-TT-0023

利用形態 :共同研究

利用課題名(日本語) :フィルム状フォトレジストの微細加工応用

Program Title(English) : Microfabrication using film-type photoresist

 利用者名(日本語)
 : <u>斉藤誠法</u>, 佐原史剛

 Username(English)
 : <u>S. Saito</u>, F. Sahara

 所属名(日本語)
 : 株式会社アイセロ

Affiliation(English) : Aicello Corporation

1. 概要(Summary)

フォトリソグラフィを基盤とする半導体微細加工技術は、 LSIや液晶パネルなど、付加価値の高いデバイスを生産 性良く製作できる。ただし、サンプル形状は、ほぼ平面に 限られる。フォトレジスト膜厚よりも凹凸が大きな立体サン プルにも、生産性を落とさずフォトリソグラフィ加工ができ れば、デバイス設計の自由度が上がり、高機能化と高付 加価値の実現につながると期待される。例えば、MEMS デバイスの多くは平面 Si 基板に垂直エッチングを施して 製作される。溝や穴を形成した後のサンプルに、金属電 極を形成しようとすると、基板に形成した穴が深いため、 通常のフォトリソグラフィは適用できない。現状では、パタ ーン精度が劣るステンシルマスクを介した金属蒸着が利 用されている。別の例である光応用分野では、光伝搬を 阻害することなく、発光・受光素子等を配置することが重 要となる。現状の平面パターンの組み合わせでは、条件 を満たせないことが多い。以上のニーズから、立体サンプ ルにも有効な微細加工技術が求められている。

本研究では、エッチング穴付き Si 基板の立体サンプルに、フィルム状フォトレジストを貼り付けて、その後パターン転写する方法を検討した.

2. 実験(Experimental)

【利用した主な装置】

マスクアライナ装置、洗浄ドラフト一式、ダイシング装置、 デジタルマイクロスコープ群

【実験方法】

一辺 12.5 µm の正方形エッチング穴付き Si 基板の上に、フィルム状のポジ型フォトレジストを貼り付けた。基板とフォトレジストの密着が得られるようにプリベークした後、幅 50 µm、ピッチ 100 µm のライン・アンド・スペースを転写した。パターニングには、通常のフォトマスクとマスクアライナを利用し、ドーズ量は 100 mJ/cm²、有機アルカリ2.38%の標準的な現像液を利用した。

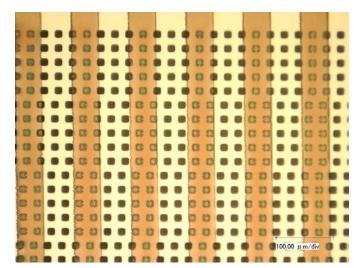


Fig. 1 Patterning result of the resist sheet pasted on Si wafer with holes.

3. 結果と考察(Results and Discussion)

Fig. 1 にパターニング結果を示す。マスクデザイン通りのパターンが得られている。パターンのエッジがシャープで、ほぼ直線であることは、露光・現像の条件が均一であることを示す。穴の上のレジスト膜は蓋をするようにカバーとなっている。パターン抜けした領域では、穴の内部や周辺に、レジストの残渣が見られない。更に、穴の一部のみをカバーしているレジスト膜も見られる。従来の、穴付きSi 基板にフォトレジストをスピンコートして現像する方法では、穴内部でレジスト膜が厚くなり取り除くのが困難である。露光と現像を強めると周辺パターンにダメージが入り易い。Fig. 1 では、これらの問題が見られない。

4. その他・特記事項(Others)

•参考文献

東田隆亮、佐藤健一、特開 2001-266400.

- ・共同研究者:豊田工業大学 佐々木実教授
- ・梶原建支援員(豊田工業大学)に感謝します。
- 5. 論文・学会発表 (Publication/Presentation) なし。

6. 関連特許(Patent)

特許出願済み。