課題番号 : F-15-TT-0010

利用形態 :機器利用

利用課題名(日本語) : CNT ナノプローブの用途開発

Program Title (English) : Application development of Carbon Nanotube Probes

利用者名(日本語) :橋本 剛,橋本 悟

Username (English) : <u>Takeshi Hashimoto</u>, Satoru Hashimoto

所属名(日本語) :株式会社名城ナノカーボン

Affiliation (English) : MEIJO NANO CARBON Co., Ltd.

1. 概要(Summary)

CNT ナノプローブとは、先端に CNT (カーボンナノチューブ)を付着させた探針であり、CNT を付着させることにより、通常の探針よりもさらに細い先端半径を実現でき、AFM などの高性能探針としての用途が期待される。探針の先端に CNT を付着させる手法はいくつかあるが、当課題では、先端に触媒金属を付着させ、その後に CVD 法によりその触媒金属からCNT を成長させるという手法を採用している。当手法で製造された CNT ナノプローブは、CNT と探針先端間が触媒金属により結合されることから、非常に高い導電性をもつため、電気伝導度も測定できる探針への応用などが期待される。

2. 実験(Experimental)

【利用した主な装置】

カーボン用プラズマ成膜装置

【実験方法】

1. 触媒金属の探針先端への付着

微小電解メッキ装置を用いて、探針先端への触媒金属のメッキを行った。メッキした探針は SEM (S-4700 Hitachi) で観察し、触媒金属が適切に付着していることを確認した。

2. 熱 CVD による CNT の成長

1. でメッキをした探針に、アルコール CVD 装置を使用して熱 CVD を行い、探針に付着した触媒金属から CNT を成長させた。その際、CNT の成長方向に配向性を与えるため、電圧を印加した。

3. プラズマ CVD による CNT の成長

カーボン用プラズマ成膜装置を使用してプラズマ CVD を行い、探針に付着した触媒金属から CNT を成長させた。

3. 結果と考察(Results and Discussion)

電圧を印加した熱 CVD によるプローブ(Fig. 1)と、

プラズマ CVD によるプローブ(Fig. 2)を比較した。 熱 CVD によるプローブは、電圧の印加により配向性 が現れているが、プラズマ CVD によるプローブに比

較して、配向性が十分ではない。

今後、熱 CVD でもプラズマ CVD と同等の配向性が 得られる条件の探索を行いたい。

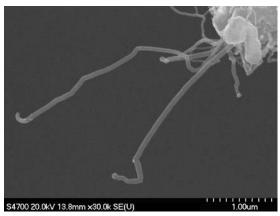


Fig. 1 CNT Probe by Thermal CVD

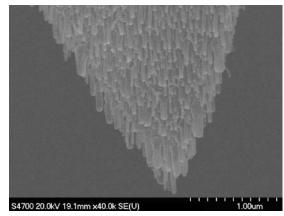


Fig. 2 CNT Probe by Plasma CVD

- <u>4. その他・特記事項(Others)</u> なし。
- 5. 論文・学会発表 (Publication/Presentation) なし。
- 6. 関連特許(Patent)

なし。