課題番号 :F-15-IT-0012

利用形態 :技術代行

利用課題名(日本語) :Si 基板上へのアルミナ堆積

Program Title (English) : Deposition of alumina on silicon substrate

利用者名(日本語) : 内田 建

Username (English) : <u>Ken Uchida</u> 所属名(日本語) : 慶應義塾大学 Affiliation (English) : Keio University

1. 概要(Summary)

アルミナ(Al₂O₃)は High-ĸ 材料として注目されている 材料である. 一般的な絶縁膜であるシリコン酸化膜と比較 して誘電率が高いため, 実効的な酸化膜の薄膜化(MOS 容量の増大)を実現しつつ,トンネルリーク電流を抑えるこ とが可能である. また,表面水酸基の密度がシリコン酸化 膜より多く,反応性に富むため,センサ応用における受容 体としての利用や SAM 膜形成などの分子修飾について, 高い効果が得られることも期待できる. 本件では, 堆積反 応に自己抑制機構を持ち, 微細かつ原子層レベルでの 堆積制御が可能とされている原子層堆積法(ALD)による 堆積を行った.

2. 実験(Experimental)

【利用した主な装置】

原子層堆積装置

【実験方法】

円形のウエハから 2 cm 角に切り出した基板について、ALD によるアルミナ堆積後にエリプソメータによる膜厚評価を行った。また、ALD 堆積後に $SPM(H_2SO_4: H_2O_2)$ 洗浄を 10 min 行った後にも同様にエリプソメータによる膜厚評価を行った。なお、フィッティングパラメータとして Al_2O_3 層中に空隙 (Void) の存在を仮定した。

3. 結果と考察(Results and Discussion)

Table. 1 result of ellipsometer

	Average	Max	Min
Thickness(nm)	34.8488	35.2719	34.5235
Void(%)	21.15	23.1	19.39
Refractive index(λ =633 nm)	1.599	1.613	1.583
${ m X}^2$	0.494588	1.387403	0.108125

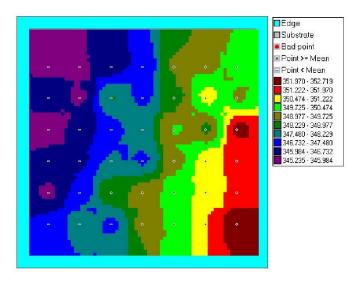


Fig. 1 film thickness distribution of Al₂O₃

測定結果から、狙いの膜厚(30 nm)と比較して膜厚平均(34.8488 nm)は $10 %以上厚い. また <math>Al_2O_3$ 層中に約 2割の空隙が存在し、疎な膜である可能性がある。

Table. 2 result of ellipsometer after SPM cleaning

	Average	Max	Min
Thickness(nm)	23.4994	24.5097	22.8931
Void(%)	19.77	20.75	18.64
Refractive index(λ=633 nm)	1.610	1.619	1.602
\mathbf{X}^2	0.120271	0.186183	0.073006

SPM 洗浄によって膜厚が減少した.

4. その他・特記事項(Others)

CREST「極細電荷チャネルとナノ熱管理工学による 極小エネルギー・多機能センサプラットフォームの創 製」プロジェクトの一環として行った.

5. 論文・学会発表 (Publication/Presentation) 特になし

6. 関連特許(Patent)

特になし