課題番号	:F-15-HK-0046	
利用形態	:機器利用	
利用課題名(日本語)	:プラズモン水分解系の助触媒効果	
Program Title(English)	: Co-catalyst effect on plasmon-induced water splitting	
利用者名(日本語)	:钟 玉磬	
Username(English)	: Yuqing Zhong	
所属名(日本語)	:北海道大学大学院情報科学研究科	
Affiliation(English)	: Graduate School of Information Science and Technology, Hokkaido University	

<u>1. 概要(Summary)</u>

We explored the performance of hydrogen (H₂) evolution using noble metals or their metal oxides as cocatalysts in the plasmon-induced water-splitting system. We eliminated the adverse effect of the Schottky barrier by obtaining ohmic contact between the semiconductor and the metal or metal oxide co-catalysts, and we used two separate reaction chambers for H₂ and O₂ evolution to avoid reverse reactions. A 2–3 nm thick rhodium layer deposited on a platinum board exhibited relatively high performance, a 3-fold increase compared with the absence of a metal oxide cocatalyst thin layer.

<u>2. 実験(Experimental)</u>

[Main equipment]

Helicon Splitting (ULVAC, MPS-4000C1/HC1), Focused Ion Beam (Hitachi, FB-2100), X-ray Photoelectron Spectroscopy (JEOL, JPS-9200), X-ray Diffract (RIGAKU RINT-2000), Cs-corrected STEM (JEOL, JEM-ARM200F)

[Methods]

Single-crystal strontium titanate (SrTiO₃, 0.05 wt % niobium doped) with a (110) surface was used as a semiconductor substrate. A 3 nm thin gold film was deposited on the front side of the SrTiO₃ by sputtering and annealed at a temperature of 800°C for 1 h in a nitrogen atmosphere to form gold nanoparticles (Au-NPs) on the SrTiO₃ surface. The Ru and Rh thin films were deposited onto the Pt board by sputtering. An In–Ga alloy paste was applied to the back side of the Nb-SrTiO₃ substrate to form ohmic contacts. Subsequently, a Pt board with a noble metal or metal oxide thin film was adhered to the back side of the substrate. The water-splitting device contained sealed reaction cells with two solution compartments separated by the NbSrTiO₃ substrate.

<u>3. 結果と考察(Results and Discussion)</u>

Various noble metals and metal oxides were used as H_2 evolution co-catalysts for comparison, and the corresponding rates of H_2 and O_2 evolution are shown in Fig. 1. The evolution of both H_2 and O_2 linearly increased

with irradiation time in all cases. The relatively higher yield of H_2 evolution obtained using Rh as a co-catalyst is likely attributable to the difference in the free energy of H_2 adsorption.

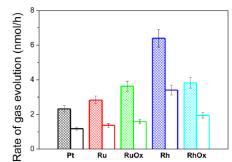


Fig. 1 Comparison of the rates of H_2 (patterned filled bars) and O_2 evolution (open bars) in the water-splitting system using a Pt board decorated with various co-catalysts.

4.	その他・	特記事項	(Others)
----	------	------	----------

·参考文献

[1] Y. Zhong et al. Angew. Chem. Int. Ed., 2014, 53, 10350-10354.

```
·共同研究者:森有子·三上剛志·中川小太郎·押切友也
```

```
<u>5. 論文·学会発表(Publication/Presentation)</u>
```

論文発表

```
(1) Y. Zhong, Y. Mori et al. J. Phys. Chem. C, 2015, 119, 8889-8897.
```

6. 関連特許(Patent)

なし