課題番号 : F-14-TT-0013

利用形態 :共同研究

利用課題名(日本語) : CNTナノプローブの用途開発

Program Title (English) : Application development of Carbon Nanotube Probes

利用者名(日本語) :橋本 剛,橋本悟

Username (English) : <u>Takeshi Hashimoto</u>, Satoru Hashimoto

所属名(日本語) :株式会社名城ナノカーボン

Affiliation (English) :MEIJO NANO CARBON Co., Ltd.

1. 概要(Summary)

CNTナノプローブとは、先端にCNT (カーボンナノチューブ)を付着させた探針であり、CNTを付着させることにより、通常の探針よりもさらに細い先端半径を実現でき、AFM などの高性能探針としての用途が期待される。探針の先端にCNTを付着させる手法はいくつかあるが、当課題では、先端に触媒金属を付着させ、その後にCVD 法によりその触媒金属からCNTを成長させるという手法を採用している。当手法で製造されたCNTナノプローブは、CNTと探針先端間が触媒金属により結合されることから、非常に高い導電性をもつため、電気伝導度も測定できる探針への応用などが期待される。

2. 実験(Experimental)

【利用した主な装置】

走查電子顕微鏡

【実験方法】

CNT ナノプローブの製造は、1. 触媒金属の探針 先端への付着、2. CVD 法による CNT の成長 の 2つの工程から成る。以下にそれぞれの実験について記述する。

1. 触媒金属の探針先端への付着

微小電解メッキ装置を用いて、探針先端への触媒金属のメッキを行った。メッキした探針は SEM (S-4700 Hitachi) で観察し、触媒金属が適切に付着していることを確認した。

2. CVD 法による CNT の成長

アルコール CVD 装置を使用して、熱 CVD を行い、 探針に付着した触媒金属から CNT を成長させた。そ の後 SEM にて CNT の成長を観察した。

3. 電圧印加による配向性制御

熱 CVD では、CNT がランダムな方向を向いていた。 そこで、熱 CVD による成長の際、電圧を印加することで配向性を与えることを考え、そのための装置を開発した。当装置にて CNT を成長させ、SEM にて成長の様子を観察した。

3. 結果と考察 (Results and Discussion)

Fig.1 CVD without electric field、Fig.2 CVD with electric field の結果の SEM 像をそれぞれ以下に示す。電圧を印加した場合は、CNT に配向性が見られる。今後、各種条件を試行し、プローブ製造に最適な印加条件を見出したい。

Fig.1 CVD without electric field

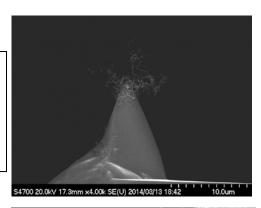


Fig.2 CVD with electric field

<u>4. その他・特記事項(Others)</u>

共同研究者: 豊田工業大学 吉村雅満教授

5. 論文·学会発表(Publication/Presentation)

なし。

6. 関連特許(Patent)

なし。