課題番号	:F-14-IT-0048
利用形態	:共同研究
利用課題名(日本語)	:
Program Title (English)	:Optimization of Gate Recess-etch Current for Device Performance
利用者名(日本語)	: <u>張翼</u>
Username (English)	: <u>Edward Yi Chang</u>
所属名(日本語)	:国立交通大学 材料工学科,台湾
Affiliation (English)	: Department of Materials Science and Engineering,
	National Chiao Tung University, Taiwan

1. <u>概要(Summary)</u>

MHEMTs with 90-nm gates on $In_{0.53}Ga_{0.47}As$ channel were fabricated. This research concentrated on gate recess-etch optimization. Because the wafers have no built-in etching stop, finding the accurate relationship of Idss and gm vs. I_{sat} is necessary.

<u>2. 実験(Experimental)</u>

The two-fingered $0.09 \times 20 \text{ um}^2$ devices with InGaAs channel and L_{SD} of 3 um were fabricated following typical HEMT processes, and fine gates exposures were obtained by e-beam lithography (JBX-6300 at Tokyo Tech). The gate recess etching process was then performed to stop at different current levels.

3. 結果と考察(Results and Discussion)

Fig.1 shows the Idss and gm vs. Isat results. We can find out that Isat = 25mA (V=1) gives the highest gm of 598.1 mS/mm. However, decreasing Idss with increasing Isat to 25mA is quite unreasonable. This indicates that more experiment is needed for further verification.

Fig. 1 Idss and gm vs Isat

The device can perform at I_{dss} =105.9 mA/mm and peak g_m = 598.1 mS/mm at V_{DS} = 0.5 V.

<u>4. その他・特記事項(Others)</u> 共同研究者等(Coauthor): Y. Miyamoto, Tokyo Tech Meng-Wei Lin, NCTU Hong-Yi Chen, NCTU <u>5. 論文・学会発表(Publication/Presentation)</u> None <u>6. 関連特許(Patent)</u> None