課題番号:F-14-IT-0041利用形態:共同研究

利用課題名 (日本語)

Program Title (English) : Effect of oxide quality on the DC Performance of InAs Quantum Well MOSFETs

利用者名(日本語) :張翼

Username (English) : Edward Yi Chang

所属名(日本語) :国立交通大学 材料工学科,台湾

Affiliation (English) : Department of Materials Science and Engineering,

National Chiao Tung University, Taiwan

1. 概要(Summary)

The influence of epitaxial structures on device DC was investigated. We found that optimized oxide quality and sub-channel indium (In) composition are beneficial to the drive current and the suppression of short channel effects.

2. 実験 (Experimental)

The devices with three kinds of InGaAs/InAs/InGaAs composite channel were fabricated following the gate-last process with 10-nm Al_2O_3 and fine gate exposures by e-beam lithography (JBX-6300 at Tokyo Tech, SEM, and surface profiler).

3. 結果と考察(Results and Discussion)

The device with oxide treatment exhibits good DC at low V_D bias of 0.5 V (I_D of 350 $\mu A/\mu m$, peak g_m of 279.8 $\mu S/\mu m$, SS of 250 mV/decade, respectively)compared with no treatment device (I_D of 257 $\mu A/\mu m$, peak g_m of 270 $\mu S/\mu m$, SS of 684 mV/decade, respectively). The improvement was attributed to the reduction in Dit and the increase in gate control ability.

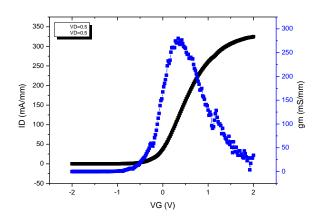


Fig. 1 Transfer characteristics of ITC QW-MOSFET.

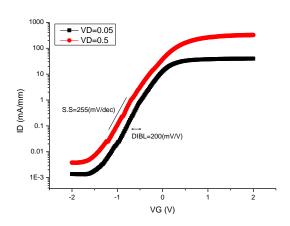


Fig. 2 Log scale I-V characteristics of QW-MOSFET.

The results indicate that the oxide quality is important for emerging sub-10-nm low-power and high-performance logic. The improvement in device performance is attributable to the use of ammonia sulfur for pretreatment, PDA with 400 degree.

4. その他・特記事項 (Others)

共同研究者等(Coauthor):

Y. Miyamoto, Tokyo Tech

Guan-Yu Lin, NCTU

5. 論文·学会発表(Publication/Presentation)

None

6. 関連特許 (Patent)

None