課題番号 : F-13-UT-0069

利用形態 : 機器利用

利用課題名(日本語) : 埋め込みゲート式架橋カーボンナノチューブ素子

Program Title (English) : Suspended carbon nanotube devices using buried gates

利用者名(日本語) : 東出紀之 1), 姜明 1), Ji Ung Lee²⁾, 加藤雄一郎 1)

Username (English) : Noriyuki Higashide¹⁾, Ming Jang¹⁾, Ji Ung Lee²⁾, <u>Yuichiro Kato</u>¹⁾

所属名(日本語) : 1) 東京大学大学院工学系研究科, 2) ニューヨーク州立大学オールバニ校

Affiliation (English) : 1) Institute of Engineering Innovation, The University of Tokyo 2) College of

Nanoscale Science and Engineering, University at Albarny, State University of

New York.

1. 概要(Summary)

酸化膜付き Si 基板上にさらに Si が乗っている、SOI 基板上に、半導体型カーボンナノチューブ (CNT)を架橋することで、上部 Si 層を二つの埋め込みゲートとして動作させる。これにより架橋 CNT 素子を実現する。

2. 実験(Experimental)

使用装置

ドラフトチャンバー、ステルスダイシング装置、レジスト、 F5112 電子線描画装置、L501D RIE、アニール炉、 SAMCO FA-1 (アッシング)、ワイヤボンダー、CE-300 ICP-RIE (山本研)、Dektak、Nanospec

実験概要

電子線描画装置及びレジスト、エッチング装置を用いてトレンチを作製し、アニール炉を用いて Si 表面を熱酸化し、絶縁膜を形成する。次に電子線描画装置と金属蒸着装置を用いて電極を作製した後、電子線描画装置を用いて触媒パターンを作製し、サンプルを清浄に保つためにアッシング装置を利用する。この後ステルスダイサーを用いてサンプルを5 mm 角にして触媒のスピンコートを行った。このようにして出来たサンプルに対して化学気相成長法で CNT を生成し、ワイヤボンダを用いて電極と電源を結線し、埋め込みゲートに電圧を印加した状態で CNT の電気伝導測定を行った。

3. 結果と考察(Results and Discussion)

Fig.1,Fig.2 に示すようにソースドレイン電圧 V_{ds} を印加して、埋め込みゲート電圧 V_{G1} , V_{G2} を変化させることで金属型と半導体型の CNT を判別する特性曲線が得られた。したがって、埋め込みゲートのデバイス作製に成功した。

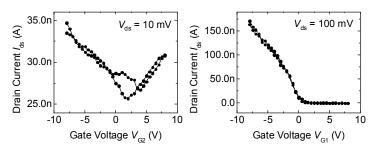


Fig.1 I-V curve of metalic (left) and semiconductor(right)-type CNTs.

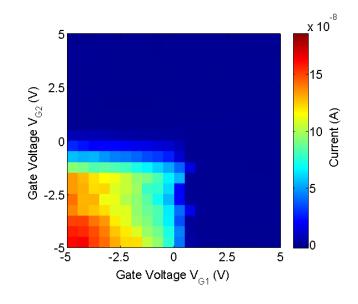


Fig.2 Drain current map on two gate voltages.

<u>4. その他・特記事項(Others)</u>

本研究は科研費 24340066 の助成を受けたものである。

5. 論文・学会発表 (Publication/Presentation)なし

6. 関連特許(Patent)

なし