課題番号 : F-13-IT-0041 利用形態 : 共同研究

利用課題名(日本語): 高速・低電力論理応用の為のエンハンスメントモード InAs HEMTsの研究

Program Title (English) : Study of Enhancement Mode InAs HEMTs for High-Speed and Low-Power Logic

Applications

利用者名(日本語) :張翼

Username (English) : Edward Yi Chang

所属名(日本語) :国立交通大学 材料工学科,台湾

Affiliation (English) : Department of Materials Science and Engineering,

National Chiao Tung University, Taiwan

1. 概要(Summary)

The enhancement mode 60 nm InAs HEMTs is investigated for high-speed and low-power logic applications. Excellent device performances in low applied voltage that the lower drain induced barrier lowering of 70 mV/V, sub-threshold swing of 67 mV/decade, and higher I_{ON}/I_{OFF} were achieved owing to two-step recess and Pt gate sinking technologies for the device fabrication.

2. 実験 (Experimental)

The device fabrication process includes mesa etching, Ohmic metal deposition and annealing, silicon nitride passivation and gate formation. Before the formation of T-shaped gate photoresist, a 50 nm silicon nitride thin layer was deposited by plasma enhanced chemical vapor deposition (PECVD) as the support of the following 60nm gate foot. Then, the T-shaped gate photoresist was carried out by using electron beam lithography system (JBX-6300 at Tokyo Tech).

3. 結果と考察(Results and Discussion)

Figure 1 shows the drain-source current of 252 mA/mm when device bias at $V_{DS} = 0.5 \text{ V}$ and $V_{GS} = 0.5 \text{ V}$. Figure 2 exhibit s the subthreshold characteristics of the device with different drain biases. Drain Induced Barrier Lowering (DIBL), which measures the change in V_T as a result of a change in V_{DS} , is calculated to be 70 mV/V at $V_{DS} = 0.5 \text{ V}$. This small DIBL correlates with an overall insensitivity of V_T to circuit design details and manufacturing variations. The sub-threshold slope (SS) of this device at $V_{DS} = 0.5 \text{ V}$ is 67mV/dec, which represents the switch transition of the device is steep. The sharp

sub-threshold characteristics result in an I_{ON}/I_{OFF} ratio of 1.69×10^4 .

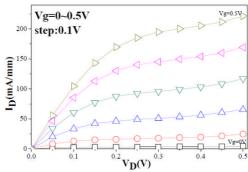


Fig.1 I_{DS} versus V_{DS} curves for the E-mode InAs/In_{0.65}Ga_{0.35}As composite-channel HEMT

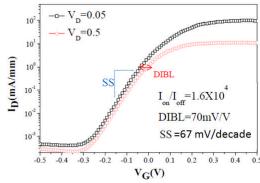


Fig.2 The sub-threshold characteristics (DIBL, SS, I_{ON}/I_{OFF} ratio) of the 60nm enhancement mode InAs HEMTs at the V_{DS} of 0.05 and 0.5V.

4. その他・特記事項 (Others)

共同研究者等(Coauthor):

Y. Miyamoto, Tokyo Tech

Tsung-Yun Lee, NCTU

Yueh-Chin Lin, NCTU

5. 論文·学会発表(Publication/Presentation)

None

6. 関連特許 (Patent)

None