課題番号 :F-13-HK-0054

利用形態 :共同研究

利用課題名(日本語) :表面増強ラマン散乱の定量評価用基板の作製

Program Title (English) : Fabrication of SERS signal detection substrate for quantitative analysis

利用者名(日本語) :<u>村田 統矢</u> Username (English) :<u>Touya Murata</u>

所属名(日本語) :千歳科学技術大学 バイオ・マテリアル学科

Affiliation (English) : Department of Bio and Material Photonics, Chitose Institute of Science and

Technology

1. 概要(Summary)

天然物から薬効成分を抽出する生薬は古来より薬 だけでなく、食品などにも多く用いられてきた。しか し、現在では国内流通量の80%以上が輸入品に頼って いる。生薬は複数の有効成分を含んでいることからそ の分析は液体クロマトグラフィーなど比較的時間を 必要とする分析が中心であった。そこで、少量でも迅 速かつ高感度に分析できる表面増強ラマン散乱 (SERS) 法を生薬分析への適用を検討するために、 既知の SERS を誘起する金属ナノ構造を作製し、生薬 の分析が可能であるかを試み、その有効性について検 討を行っている。SERS は金属コロイドの凝集状態な どによってシグナル強度が大きく変化し、生薬の定量 性などを分析することが難しい。そこで、測定サンプ ルを一定量だけ保持できるような表面微細構造を基 板上に作製することで、SERS 分析時の測定サンプル の均一性を向上させることを検討した。

2. 実験 (Experimental)

Si 基板上 HMDS(ヘキサメチルジシラザン)を塗布し、その後にフォトレジスト(OFPR-5000)を塗布した。ポストベーク後にレーザー描画装置(ネオアーク: DDB-201-200)を用いて 30μm の矩形を一定間隔で描画し、現像を行った。さらに、ドライエッチング装置(RIE-10NRV)により酸素プラズマ処理により描画パターン部分の HMDS の除去を行い、3-アミノプロピルトリエトキシシランのカップリング処理を行った。以上のプロセスにより表面にパターン化されたアミンを持つ基板を作製し、金属コロイド(銀ナノ粒子)が吸着しやすい環境を整えた。

3. 結果と考察(Results and Discussion)

作製した基板上に SERS 測定用試料 (銀ナノ粒子と 生薬の標準試料であるベルベリンを混合した溶液)を 滴下した。溶液滴下後の光学顕微鏡写真を Fig.1 に示 す。溶液を滴下させる前には観察されなかった描画パ ターンが観察され、描画部分に選択的に試料が保持さ れることがわかった。また、SERS 測定を行うと、黒 く観察されている部分からはベルベリンのピークが 観察された。このことから、今回作製した基板により SERS 測定試料を選択的に保持できる基板の作製が可 能であることがわかった。今後はパターンの微細化や 吸着性の向上などについて検討を行っていく。

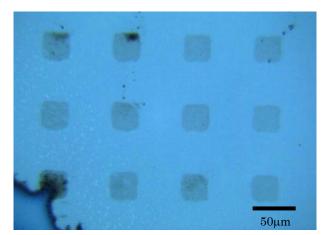


Fig.1 SERS analysis sample on fabricated substrate

4. その他・特記事項 (Others)

共同研究者:松尾保孝(北大電子研)

5. 論文・学会発表 (Publication/Presentation) なし

6. 関連特許(Patent)

なし