課題番号 :F-13-AT-0044

利用形態:機器利用

利用課題名(日本語):相変化材料の膜質評価とデバイス作製

Program Title (English) : Characterization of phase change material and its device fabrication

利用者名(日本語) : 森川貴博

Username (English) :T. Morikawa

所属名(日本語) :超低電圧デバイス技術研究組合

Affiliation (English) :Low power Electronics association & Project (LEAP)

1. 概要(Summary)

RIE 装置を用いて相変化材料 GeTe および Sb_2Te_3 膜のエッチング条件を検討した。 CF_4 , SF_6 のいずれのガスでもエッチング可能であったが, CF_4 のほうがサイドエッチが少なく加工できることが分かった。

2. 実験 (Experimental)

熱酸化膜 100 nm を形成した Si ウエハ上に GeTe および Sb₂Te₃を約 100 nm 製膜し、その上にレジストパターンを形成した。続いてナノプロセシング施設(NPF)に設置されている RIE 装置にてエッチングを行なった。検討したエッチングの条件は Tab.1 に示す。エッチングしたウエハをSEM で残膜厚と形状を観察した。

Tab.1 RIE condition.

	Gas	Flowrate	Pressure	RF
Condition 1	CF ₄	50sccm	5.0Pa	100W
Condition 2	SF ₆	30sccm	5.0Pa	100W

3. 結果と考察 (Results and Discussion)

条件 1,条件 2 いずれの条件でもエッチングが可能であり、Tab. 2 に示すエッチングレートが得られた。エッチングした基板の断面 SEM 写真を Fig. 1 に示す。条件 2 はサイドエッチングが入りやすいことが分かった。以上の結果より、相変化デバイスの作製においては条件 1 を相変化材料のエッチング条件として選択する。

Tab. 2 RIE rate of phase change materials.

	GeTe	Sb ₂ Te ₃
Condition 1	3.0nm/s	1.1nm/s
Condition 2	3.3nm/s	0.8nm/s

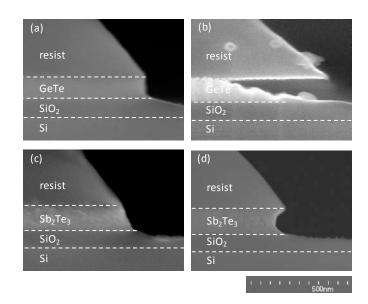


Fig. 1 Cross sectional SEM of films after RIE.

(a)GeTe after 60s of cond. 1, (b)GeTe after 60s of cond. 2,

(c)Sb₂Te₃ after 120s of cond. 1,(d) Sb₂Te₃ after 120s of cond. 2.

4. その他・特記事項 (Others)

本研究は、経済産業省と NEDO の「低炭素社会を実現する超低電圧デバイスプロジェクト」に係わる業務委託として実施した。

5. 論文·学会発表(Publication/Presentation)

- (1) M. Kitamura et al: SSDM 2013, A-3-2.
- (2) T. Morikawa et al: ADMETA plus 2013 23rd Asian Session, 7-6.

<u>6. 関連特許(Patent)</u>

なし。