*課題番号	: F-12-IT-0028
※支援課題名(日本語)	: W-band MMIC の為の In _x Ga _{1-x} As メタモルフィック HEMTs
*Program Title (in English)	: Study of In _x Ga _{1-x} As Metamorphic HEMTs for W-band MMIC
	Applications
※利用者名(日本語)	:張翼
*Username (in English)	: Edward Yi Chang
*所属名(日本語)	:国立交通大学 材料工学科,台湾
**Affliation (in English)	: Department of Materials Science and Engineering,
	National Chiao Tung University, Taiwan

<u>※概要(Summary)</u>:

The purpose of this research is to develop high frequency (i.e. intrinsic current gain cutoff frequency (f_T) > 200GHz) HEMT for automobile radar MMIC. Observed intrinsic (f_T) of the device is about 190GHz.

<u>*実験(Experimental)</u>:

Two different epitaxial structures were grown on GaAs substrate. The one has channel with high indium content (60%) and the other has low indium content (40%). In device fabrication, gate metal was patterned using E-beam exposure (JBX-6300, Tokyo Tech).

<u>*結果と考察(Results and Discussion)</u>:

The $0.09 \times 20 \text{ um}^2$ devices with L_{SD} of 2um and In 60% channel were prepared and characterized. The measured output is shown in Fig.1. The device exhibits good pinch-off behaviors and I_{dss}=601 mA/mm at V_{DS} = 0.7V, peak Gm=846 mS/mm. Due to higher indium mole fraction, devices slightly suffer from impact ionization. RF performance was also characterized as shown in Fig.2 at V_{DS}=0.5V and V_{GS}=-0.4V. The fT extracted by extrapolating H₂₁ with a -20dB/decade slope was 190GHz.

Even though the RF performance of In 60% devices were good enough to meet the requirement of low noise amplifier, the off-state breakdown (BVoFF) was not good enough for power amplifier. Therefore, lower indium content (40%) epi structure was used to enhance the breakdown behavior. The In 40% devices possess BV_{OFF} larger than 7V.

Fig.1 Output characteristics of 0.09x20um² In_{0.6}Ga_{0.4}As Metamorphic HEMT

Fig.2 RF performance of In_{0.6}Ga_{0.4}As MHEMTs

<u>**その他・特記事項 (Others)</u>: N/A

<u>共同研究者等(Coauthor)</u>: Ming Huei Lin, NCTU Wei⁻ting Hsu, NCTU Y. Miyamoto, Tokyo Tech 論文・学会発表(Publication/Presentation): None <u>関連特許(Patent)</u>: None