※課題番号 : F-12-HK-0030

※支援課題名(日本語) : レーザー描画装置を用いたマイクロ流路ミキサーの製作

*Program Title (in English) : Fabrication of the microfluidic mixer by Laser Beam Direct Lithography

※利用者名(日本語) : 高田 紀子

*Username (in English) : Noriko Takada

**所属名(日本語) : 分子科学研究所 装置開発室

**Affiliation (in English) : Equipment Development Center IMS

※概要 (Summary):

レーザー描画装置を用いて、マイクロ流路パターンの加工条件を検討した。検討を行った流路パターンは十字型の2液混合のもので、流路深さ50μm、最小幅10μmのパターンを有し、タンパク質の構造変化を検出するのに応用される。通常は、分子研装置開発室で有するフォトリソグラフィー設備と外注のフォトマスクを使って鋳型となるレジストパターンを製作しているが、フォトマスクの納期と金額の面からパターンの変更が容易にできないという問題点がある。そこで、他の加工方法も検討するため、北海道大学ナノテク連携室(以下、北大)で公開しているレーザー描画装置を用いて、同パターンの加工を試みた。

**実験 (Experimental):

厚膜塗付が可能なネガ型のフォトレジスト SU-8 3000 を、スピンコートで厚さ $10\,\mu$ m、 $25\,\mu$ m、 $50\,\mu$ m になるように SiO_2 基板に塗付した。そして、北大で経験のあるポジレジスト AZP1350 でのレーザー描画条件をもとに、レーザーの電圧と描画速度を変化させ、SU-8 それぞれの膜厚に対する加工条件を検討した。パターン形状は、最小幅 $10\,\mu$ m を含む流路中心部分を描画、現像し、設計値との寸法を比較した。レーザー描画装置には、北大で公開しているレーザー直接描画装置 DDB-201 (ネオアーク社製)、レーザー波長は 375nm を使用した。

**結果と考<u>察(Results and Discussion)</u>:

SU-8 それぞれの膜厚に対するレーザー描画の条件 とパターン寸法の結果を表 1 に示す。また、目標寸法 である膜厚 50μ m の時の SEM 画像を図 1 に示す。

基板	レジプスト	スピンコート	レーザー描画	設計値幅10μm部分 のパターン寸法
SiO2	SU-8 3010	500rpm, 10sec (Slope5sec)→ 3000rpm, 30sec (Slope5sec) T10μm想定	①3V, 50μm/s ②3V, 25μm/s ③3V, 10μm/s	①幅5.9µmx高さ6.3µm ②幅9.1µmx高さ10.1µm ③幅10.7µmx高さ11.0µm
SiO2	SU 8 3025	500rpm, 10sec (Slope5sec)→ 3000rpm, 30sec (Slope5sec) T25μm想定	(1)3V, 10μm/s (2)3.5V, 50μπ/s	<mark>①幅13.3μm×高さ28.5μm</mark> ②幅15.8μπx高さ27.0μm
SiO2	SU-8 3025	500rpm, 10sec (Slope5sec)→ 1500rpm, 30sec (Slope5sec) 150μm想定	(1)3V, 10μm/s (2)3V, 50μm/s (3)3.5V, 50μm/s	で頼11.8µmx高さ47.5µm ② ③幅14.4µmx高さ46.9µm

表 1. レジスト膜厚 $10\,\mu$ m、 $25\,\mu$ m、 $50\,\mu$ m に対する レーザー描画条件とパターン寸法の結果 赤文字部分が、設計値に最も近かった値

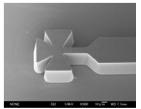


図 1. レジスト膜厚 50μ m に対して、レーザー描画で製作した流路パターン中心部の SEM 画像最小幅が 10μ m の設計値に対し、突起上部の幅が 11.8μ m

**その他・特記事項 (Others):

・ 今後の課題

図1のSEM画像から、パターンの根元部分が大きく広がっていることが分かる。原因には光の焦点深度や回折の影響が考えられる。このようなパターン形状は成型の際の離型性や実験結果に影響する可能性があり、今後問題になるようであれば改善の必要がある。

• 参考文献

1) Shawn H. Pfeil, Charles E. Wickersham, Armin Hoffmann and Everett A. Lipman, REVIEW OF SCIENTIFIC INSTRUMENTS **80** (2009), 055105.

<u>共同研究者等(Coauthor):</u> 北海道大学 笠睛也 <u>論文・学会発表(Publication/Presentation):</u> なし 関連特許(Patent): なし